3.87 \(\int \frac {\text {sech}^2(c+d x)}{(a+b \text {sech}^2(c+d x))^2} \, dx\)

Optimal. Leaf size=74 \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a+b}}\right )}{2 \sqrt {b} d (a+b)^{3/2}}+\frac {\tanh (c+d x)}{2 d (a+b) \left (a-b \tanh ^2(c+d x)+b\right )} \]

[Out]

1/2*arctanh(b^(1/2)*tanh(d*x+c)/(a+b)^(1/2))/(a+b)^(3/2)/d/b^(1/2)+1/2*tanh(d*x+c)/(a+b)/d/(a+b-b*tanh(d*x+c)^
2)

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 74, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {4146, 199, 208} \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a+b}}\right )}{2 \sqrt {b} d (a+b)^{3/2}}+\frac {\tanh (c+d x)}{2 d (a+b) \left (a-b \tanh ^2(c+d x)+b\right )} \]

Antiderivative was successfully verified.

[In]

Int[Sech[c + d*x]^2/(a + b*Sech[c + d*x]^2)^2,x]

[Out]

ArcTanh[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a + b]]/(2*Sqrt[b]*(a + b)^(3/2)*d) + Tanh[c + d*x]/(2*(a + b)*d*(a + b -
 b*Tanh[c + d*x]^2))

Rule 199

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[(x*(a + b*x^n)^(p + 1))/(a*n*(p + 1)), x] + Dist[(n*(p +
 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (In
tegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[p]
)

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 4146

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fre
eFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/
2), x]^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && IntegerQ[n/2]

Rubi steps

\begin {align*} \int \frac {\text {sech}^2(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {1}{\left (a+b-b x^2\right )^2} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac {\tanh (c+d x)}{2 (a+b) d \left (a+b-b \tanh ^2(c+d x)\right )}+\frac {\operatorname {Subst}\left (\int \frac {1}{a+b-b x^2} \, dx,x,\tanh (c+d x)\right )}{2 (a+b) d}\\ &=\frac {\tanh ^{-1}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a+b}}\right )}{2 \sqrt {b} (a+b)^{3/2} d}+\frac {\tanh (c+d x)}{2 (a+b) d \left (a+b-b \tanh ^2(c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 1.01, size = 187, normalized size = 2.53 \[ \frac {\text {sech}^4(c+d x) (a \cosh (2 (c+d x))+a+2 b) \left (\frac {(\cosh (2 c)-\sinh (2 c)) (a \cosh (2 (c+d x))+a+2 b) \tanh ^{-1}\left (\frac {(\cosh (2 c)-\sinh (2 c)) \text {sech}(d x) ((a+2 b) \sinh (d x)-a \sinh (2 c+d x))}{2 \sqrt {a+b} \sqrt {b (\cosh (c)-\sinh (c))^4}}\right )}{\sqrt {a+b} \sqrt {b (\cosh (c)-\sinh (c))^4}}-\frac {(a+2 b) \tanh (2 c)}{a}+\text {sech}(2 c) \sinh (2 d x)\right )}{8 d (a+b) \left (a+b \text {sech}^2(c+d x)\right )^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Sech[c + d*x]^2/(a + b*Sech[c + d*x]^2)^2,x]

[Out]

((a + 2*b + a*Cosh[2*(c + d*x)])*Sech[c + d*x]^4*((ArcTanh[(Sech[d*x]*(Cosh[2*c] - Sinh[2*c])*((a + 2*b)*Sinh[
d*x] - a*Sinh[2*c + d*x]))/(2*Sqrt[a + b]*Sqrt[b*(Cosh[c] - Sinh[c])^4])]*(a + 2*b + a*Cosh[2*(c + d*x)])*(Cos
h[2*c] - Sinh[2*c]))/(Sqrt[a + b]*Sqrt[b*(Cosh[c] - Sinh[c])^4]) + Sech[2*c]*Sinh[2*d*x] - ((a + 2*b)*Tanh[2*c
])/a))/(8*(a + b)*d*(a + b*Sech[c + d*x]^2)^2)

________________________________________________________________________________________

fricas [B]  time = 0.44, size = 1489, normalized size = 20.12 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^2/(a+b*sech(d*x+c)^2)^2,x, algorithm="fricas")

[Out]

[-1/4*(4*a^2*b + 4*a*b^2 + 4*(a^2*b + 3*a*b^2 + 2*b^3)*cosh(d*x + c)^2 + 8*(a^2*b + 3*a*b^2 + 2*b^3)*cosh(d*x
+ c)*sinh(d*x + c) + 4*(a^2*b + 3*a*b^2 + 2*b^3)*sinh(d*x + c)^2 - (a^2*cosh(d*x + c)^4 + 4*a^2*cosh(d*x + c)*
sinh(d*x + c)^3 + a^2*sinh(d*x + c)^4 + 2*(a^2 + 2*a*b)*cosh(d*x + c)^2 + 2*(3*a^2*cosh(d*x + c)^2 + a^2 + 2*a
*b)*sinh(d*x + c)^2 + a^2 + 4*(a^2*cosh(d*x + c)^3 + (a^2 + 2*a*b)*cosh(d*x + c))*sinh(d*x + c))*sqrt(a*b + b^
2)*log((a^2*cosh(d*x + c)^4 + 4*a^2*cosh(d*x + c)*sinh(d*x + c)^3 + a^2*sinh(d*x + c)^4 + 2*(a^2 + 2*a*b)*cosh
(d*x + c)^2 + 2*(3*a^2*cosh(d*x + c)^2 + a^2 + 2*a*b)*sinh(d*x + c)^2 + a^2 + 8*a*b + 8*b^2 + 4*(a^2*cosh(d*x
+ c)^3 + (a^2 + 2*a*b)*cosh(d*x + c))*sinh(d*x + c) - 4*(a*cosh(d*x + c)^2 + 2*a*cosh(d*x + c)*sinh(d*x + c) +
 a*sinh(d*x + c)^2 + a + 2*b)*sqrt(a*b + b^2))/(a*cosh(d*x + c)^4 + 4*a*cosh(d*x + c)*sinh(d*x + c)^3 + a*sinh
(d*x + c)^4 + 2*(a + 2*b)*cosh(d*x + c)^2 + 2*(3*a*cosh(d*x + c)^2 + a + 2*b)*sinh(d*x + c)^2 + 4*(a*cosh(d*x
+ c)^3 + (a + 2*b)*cosh(d*x + c))*sinh(d*x + c) + a)))/((a^4*b + 2*a^3*b^2 + a^2*b^3)*d*cosh(d*x + c)^4 + 4*(a
^4*b + 2*a^3*b^2 + a^2*b^3)*d*cosh(d*x + c)*sinh(d*x + c)^3 + (a^4*b + 2*a^3*b^2 + a^2*b^3)*d*sinh(d*x + c)^4
+ 2*(a^4*b + 4*a^3*b^2 + 5*a^2*b^3 + 2*a*b^4)*d*cosh(d*x + c)^2 + 2*(3*(a^4*b + 2*a^3*b^2 + a^2*b^3)*d*cosh(d*
x + c)^2 + (a^4*b + 4*a^3*b^2 + 5*a^2*b^3 + 2*a*b^4)*d)*sinh(d*x + c)^2 + (a^4*b + 2*a^3*b^2 + a^2*b^3)*d + 4*
((a^4*b + 2*a^3*b^2 + a^2*b^3)*d*cosh(d*x + c)^3 + (a^4*b + 4*a^3*b^2 + 5*a^2*b^3 + 2*a*b^4)*d*cosh(d*x + c))*
sinh(d*x + c)), -1/2*(2*a^2*b + 2*a*b^2 + 2*(a^2*b + 3*a*b^2 + 2*b^3)*cosh(d*x + c)^2 + 4*(a^2*b + 3*a*b^2 + 2
*b^3)*cosh(d*x + c)*sinh(d*x + c) + 2*(a^2*b + 3*a*b^2 + 2*b^3)*sinh(d*x + c)^2 - (a^2*cosh(d*x + c)^4 + 4*a^2
*cosh(d*x + c)*sinh(d*x + c)^3 + a^2*sinh(d*x + c)^4 + 2*(a^2 + 2*a*b)*cosh(d*x + c)^2 + 2*(3*a^2*cosh(d*x + c
)^2 + a^2 + 2*a*b)*sinh(d*x + c)^2 + a^2 + 4*(a^2*cosh(d*x + c)^3 + (a^2 + 2*a*b)*cosh(d*x + c))*sinh(d*x + c)
)*sqrt(-a*b - b^2)*arctan(1/2*(a*cosh(d*x + c)^2 + 2*a*cosh(d*x + c)*sinh(d*x + c) + a*sinh(d*x + c)^2 + a + 2
*b)*sqrt(-a*b - b^2)/(a*b + b^2)))/((a^4*b + 2*a^3*b^2 + a^2*b^3)*d*cosh(d*x + c)^4 + 4*(a^4*b + 2*a^3*b^2 + a
^2*b^3)*d*cosh(d*x + c)*sinh(d*x + c)^3 + (a^4*b + 2*a^3*b^2 + a^2*b^3)*d*sinh(d*x + c)^4 + 2*(a^4*b + 4*a^3*b
^2 + 5*a^2*b^3 + 2*a*b^4)*d*cosh(d*x + c)^2 + 2*(3*(a^4*b + 2*a^3*b^2 + a^2*b^3)*d*cosh(d*x + c)^2 + (a^4*b +
4*a^3*b^2 + 5*a^2*b^3 + 2*a*b^4)*d)*sinh(d*x + c)^2 + (a^4*b + 2*a^3*b^2 + a^2*b^3)*d + 4*((a^4*b + 2*a^3*b^2
+ a^2*b^3)*d*cosh(d*x + c)^3 + (a^4*b + 4*a^3*b^2 + 5*a^2*b^3 + 2*a*b^4)*d*cosh(d*x + c))*sinh(d*x + c))]

________________________________________________________________________________________

giac [A]  time = 0.74, size = 130, normalized size = 1.76 \[ \frac {\frac {\arctan \left (\frac {a e^{\left (2 \, d x + 2 \, c\right )} + a + 2 \, b}{2 \, \sqrt {-a b - b^{2}}}\right )}{\sqrt {-a b - b^{2}} {\left (a + b\right )}} - \frac {2 \, {\left (a e^{\left (2 \, d x + 2 \, c\right )} + 2 \, b e^{\left (2 \, d x + 2 \, c\right )} + a\right )}}{{\left (a^{2} + a b\right )} {\left (a e^{\left (4 \, d x + 4 \, c\right )} + 2 \, a e^{\left (2 \, d x + 2 \, c\right )} + 4 \, b e^{\left (2 \, d x + 2 \, c\right )} + a\right )}}}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^2/(a+b*sech(d*x+c)^2)^2,x, algorithm="giac")

[Out]

1/2*(arctan(1/2*(a*e^(2*d*x + 2*c) + a + 2*b)/sqrt(-a*b - b^2))/(sqrt(-a*b - b^2)*(a + b)) - 2*(a*e^(2*d*x + 2
*c) + 2*b*e^(2*d*x + 2*c) + a)/((a^2 + a*b)*(a*e^(4*d*x + 4*c) + 2*a*e^(2*d*x + 2*c) + 4*b*e^(2*d*x + 2*c) + a
)))/d

________________________________________________________________________________________

maple [B]  time = 0.25, size = 263, normalized size = 3.55 \[ \frac {\tanh ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )}{d \left (\left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +b \left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -2 \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a +b \right ) \left (a +b \right )}+\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{d \left (\left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +b \left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -2 \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a +b \right ) \left (a +b \right )}-\frac {\ln \left (-\sqrt {a +b}\, \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 \sqrt {b}\, \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {a +b}\right )}{4 d \left (a +b \right )^{\frac {3}{2}} \sqrt {b}}+\frac {\ln \left (\sqrt {a +b}\, \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 \sqrt {b}\, \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {a +b}\right )}{4 d \left (a +b \right )^{\frac {3}{2}} \sqrt {b}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sech(d*x+c)^2/(a+b*sech(d*x+c)^2)^2,x)

[Out]

1/d/(tanh(1/2*d*x+1/2*c)^4*a+b*tanh(1/2*d*x+1/2*c)^4+2*tanh(1/2*d*x+1/2*c)^2*a-2*tanh(1/2*d*x+1/2*c)^2*b+a+b)/
(a+b)*tanh(1/2*d*x+1/2*c)^3+1/d/(tanh(1/2*d*x+1/2*c)^4*a+b*tanh(1/2*d*x+1/2*c)^4+2*tanh(1/2*d*x+1/2*c)^2*a-2*t
anh(1/2*d*x+1/2*c)^2*b+a+b)/(a+b)*tanh(1/2*d*x+1/2*c)-1/4/d/(a+b)^(3/2)/b^(1/2)*ln(-(a+b)^(1/2)*tanh(1/2*d*x+1
/2*c)^2+2*b^(1/2)*tanh(1/2*d*x+1/2*c)-(a+b)^(1/2))+1/4/d/(a+b)^(3/2)/b^(1/2)*ln((a+b)^(1/2)*tanh(1/2*d*x+1/2*c
)^2+2*b^(1/2)*tanh(1/2*d*x+1/2*c)+(a+b)^(1/2))

________________________________________________________________________________________

maxima [B]  time = 0.46, size = 150, normalized size = 2.03 \[ \frac {{\left (a + 2 \, b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + a}{{\left (a^{3} + a^{2} b + 2 \, {\left (a^{3} + 3 \, a^{2} b + 2 \, a b^{2}\right )} e^{\left (-2 \, d x - 2 \, c\right )} + {\left (a^{3} + a^{2} b\right )} e^{\left (-4 \, d x - 4 \, c\right )}\right )} d} - \frac {\log \left (\frac {a e^{\left (-2 \, d x - 2 \, c\right )} + a + 2 \, b - 2 \, \sqrt {{\left (a + b\right )} b}}{a e^{\left (-2 \, d x - 2 \, c\right )} + a + 2 \, b + 2 \, \sqrt {{\left (a + b\right )} b}}\right )}{4 \, \sqrt {{\left (a + b\right )} b} {\left (a + b\right )} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^2/(a+b*sech(d*x+c)^2)^2,x, algorithm="maxima")

[Out]

((a + 2*b)*e^(-2*d*x - 2*c) + a)/((a^3 + a^2*b + 2*(a^3 + 3*a^2*b + 2*a*b^2)*e^(-2*d*x - 2*c) + (a^3 + a^2*b)*
e^(-4*d*x - 4*c))*d) - 1/4*log((a*e^(-2*d*x - 2*c) + a + 2*b - 2*sqrt((a + b)*b))/(a*e^(-2*d*x - 2*c) + a + 2*
b + 2*sqrt((a + b)*b)))/(sqrt((a + b)*b)*(a + b)*d)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{{\mathrm {cosh}\left (c+d\,x\right )}^2\,{\left (a+\frac {b}{{\mathrm {cosh}\left (c+d\,x\right )}^2}\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cosh(c + d*x)^2*(a + b/cosh(c + d*x)^2)^2),x)

[Out]

int(1/(cosh(c + d*x)^2*(a + b/cosh(c + d*x)^2)^2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\operatorname {sech}^{2}{\left (c + d x \right )}}{\left (a + b \operatorname {sech}^{2}{\left (c + d x \right )}\right )^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)**2/(a+b*sech(d*x+c)**2)**2,x)

[Out]

Integral(sech(c + d*x)**2/(a + b*sech(c + d*x)**2)**2, x)

________________________________________________________________________________________